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ABSTRACT

Ar, interesting identification schenle for scalar input,

scalar output linear systems, proposed by Lien in [1]^is

investigated for a wide class of random inputs. The inputs

^:ki u i (t), where

which is asymptotically

for random systems [2]

ability) of the identi-

include the class of functions u(t) _

{u^t), ...uk (t)} i^ a Markov process

stationary. An invariant set theorem

is used to prove convergence (ir_ prob

fication aJ_gorithm proposed in [1].



1.	 Introduction

Consider the scalar, asymptotic^llly stable, reduced

form, input-output representation

(1)	 ( dn n + nFla i dl l )v( t ) - ( 
F. 

bi dll)u(t),
dt	 i=o	 dt	 i=o	 dt

where m < n, and u is the scalar input.

Mor-^ precisely, there is a least dimension, s.symptotically

stable, systera

(la) x = Ax + Bu

y = Hx

which represents (1). In Laplace transform form

Y(s) = N(^) u(s) +nil ^,1(s)
	

xi(0)
D(s)	 ^,	 D(s)

where N,D are the obvious polynomials and N/D is in reduced form.

Also

Y( t ) = Y o ( t ) + 8 (t)

where y o (t) is the solution for x(0) = 0 and 8(t) -^ 0 exponentially

fast.
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In an interesting paper [1], Lion investigated a versatile

method for id^^ntifyi n^; the ecnstant coefficients {ai ,b i } .	 In a.

sense, the method is a type of model reference systeL!, and Lion

proved that the continualJ_y adjusted 'model' parameters {a.i(t)^

S i (t)} converged to values {a°.,R^} from which the {a i , bi}

could usually be com^ , uted, provided that the input was periodic

ar^d contained sufficien+.ly many frequencies.

The peri •^dicity requirement appeared since a Liapunov function

technique was used and an invariant set theorem appealed to. The

latter theoreu^ required periodicity. From the results of [1],

one cannot assert convergence of the algorithm when zhe inputs are

random. In this paper, an invariant set theorem for random systems 	 ^

[2] is applied to yield that Lion's algorithm converges for a very

wide class of asymptotically stationary inputs. In fact, ;+. seems

likely that the class includes all inputs which are of practical
s

interest, which are of the form u(t) = Ek i u i (t), where r u(t) _
1

(ul(t),...,us(t))' is an asymptotically stationary Markov process.

The result is interesting because the class of inputs is

quite realistic, and important and because it illustrates the

applicability of little known stochastic stability results to

a very practical problem. Next a brief summary of Lion's method

is given.	 In Section 3 the random ^_nputs are described,Section 4

discusses stocnastic in •,^ariant sets, and Section 5 states and

proves the convergence theorem for the identification algorithm.

fi The prime' denotes transpose.
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2.	 Lion's Identification Scheme

The description of Lion's method is brief. 	 It is included

partially for purposes of self containment of the paper but we also

require a more exact treatment, especially in regard to the effects

of initial conditions, and transient terms. For more motivation

and detail see [1].

Let H(s) be an asymptotically stable, finite order, rational

transfEr function,where order of denomenat o r minus order of

numerator > n. Define the functions yk (t), uk (t), via the

Laplace transform relations yk (s) = H(s)(s+c)ky(s), u k (s) =

H(s)(s+c) 
k
u(s).	 Intuitively, the ratios of the y k (s) (or uk(s))

yield estimates of the derivatives. Introduce the system error

functions (in complex domain and time domain, resp.)

n-1	 m

(2a) E(s) = y n ( s ) + oaiy i (s) + U ui(s)

n-1	 m
(2b) E(t) = Y n ( t ) + o a i y i ( t ) + ER ui(t)•

It is easy to see that if all'initial condition' are zero, there

are a i = ai = a 	 ^i = S i , which do not depend on the input, and

for which E(t) - 0.	 In any case, for these coefficients

{ao , S o } in (2b), E(t) ->0 exponentially.	 The {a
i
,b.} cani	 i	 i

usually be calculated from {a°, Q°}. See Lion [1] for a

i s always denotes the 'Laplace Transform' variable.
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discussion and examples of this point. Thus the identification

problem is simply reduced to the calculation of {a i ,ifi
	 In

fact, placinE- the problem in this form was one of the nice aspects

of (1]. The concern in this paper is solely with the calculation

of 
{a o So}.

Next,choose any constant k > 0, and define the a

-2 ^aE 2 (t) "30C 	_ -k E(t)y^(t)

(3)

Sj _ -2 C2 E 2 (tHas^]	 _ -k E(t)u^(t)•

Define the column rectors	 z,w(t), and matrix A(t),

z =
(ao

0
-	 a 0 ,...,	 an	 -

0	 0an ,	 R0	 -	 S o ,...,	 Sm

W (t)	 _ (Yo(t),...^Yn -1(t), u0 (t),...,	 um(t))'.

_ A(t)	 _ -kw(t)w'(t).

Let wo(t),.yk(t), uk(t), etc. ,denote the quanti

w(t), yk (t), uk (t), etc ., when the initial condition

(la) is zero. For the remainder of this section u(t)

periodic input. Then A(t) is uniformly bounded.

(3) yields (4a)	 =
n-1	 -

(4a)	 z = -kw(t)w'(t)z - kw(t)(y n (t) + S a0yi(t)

Ao (t)z + d t = Ao (t)z + (AT(t)z + 6t]



0
BE

where AT(t) is the transient part of A°(t), and tends to zero

exponentially. A o (t) is periodic. EE

Alternatively,

(4b)	 i = -kw°(t) E (t) + dt

nat = [A(t) - A°(t)]z - kw(t)[Y n (t) + olaiY i (t) + o^°iui(t)]

— —	
at = -k E (t)[ w (t) - w°(t)].

WithLiapunov function V(z) = z'z EIzI 2 , we have t =	 — ---

(5)	
=	 dt(z'z) _ -2k(z'w) 2 - k(z'w)[Yn

 +w'a01	 --

E -2k (z'w) 2 + pt 	 --

where a° 	 (ao1•••an -1' 60o1 ­ 1 ^m)'• Then since, the

{Yi (t), u i (t)} are uniformly bounded,

dt I Z 1 2	 K2 I Z I	
--

for some real K2 , which implies that Iz(t)I = Ko + K1
 t. Since	 -

[y n (t) + w '(t)a°] ->-0 exponentially, it is also true that pt

is uniformly bounded and is integrable. This, and the form (5)+

imply that (z(t)I 2 is uniformly bounded and that z'(t)w(t) -► 0.

Also, by (5) and the non-negativity of z'z, z'(t)w(t) is square

tSometimes the t argument is dropped, for simplicity of Writing.
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integrable. In turn, this implies that fi E(t) = y n (t) +
n-1	 =	 m

o a
i (t)y i (t) + os i (t)u i (t) -^ 0 and is square integrable (but riot

necessarily integrable). Finally,d t and d t and AT(t)z(t) are

all 0(e -Xt ) for some X > 0, and are uniformly bounded.

Using this, the periodicity of Ap(t), and the invariant set

Theorem [3], we conclude that z(t) tends to the largest invariant

set consistent with E(t) = 0 and 8 t = 0. These t conditions,

Put into (4a) and (4b), give z = 0 or z(t) - ► constant = z, or

ai (t)	 ai S i (t ) -^ ^ i . = Then we need only determine the

constants satisfying

—_	
= 
0 = E(t)	 yn (t) + n o l a.y °(t) + Es.0°.(t),

i i	 o

ind the identification is complete.

3

To see this, write z'w + y n - y n = E(t) - [yn + ECLO 	 +

ES°.u i ] -+ 0. Since the bracketed term -+ 0 exponentially,
E ( t ) 

+ 0.

The argument here is a little careless. The random case,

of greater interest here, is more careful at this point.

In fact, it' is not required to use the invariant set theoreiis

for periodic inputs. If the inputs u, and the {uk,yk}

are 'state variabilized' (as they ' can be since u is periodic),

the ordinary invariant set theorem can be used. In fact, the

result is true for any input u(t) which is the uniformly

bounded and uniformly differentiable solution to a differential

equation. This 'dynamical' aspect of the result also appears

in the random case, where the inputs are related to a Markov

process.

't
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3. Identification with Random Inputs

s=

In order to use state variable - or dynamical. methods (such

as invariant set theorems or Liapunov theorems) it is required

that the input have a 'dynamical' structure. In particular, let

U (t) = (ul(t),...,us(t))' be a vector Markov process. The random

case analysis is almost the same as the deterministic case except

for one crucial point. Assume

(Al) u(t) is continuous on the right w.p.l. (with pr.,bability

one), has a stationary transition function and

	

Eju(t)1 2 = Mo <C ,	 for some real Mo.

The input is Ek i u i (t) = u(t).

(A2) P(lu(t)I< Ml e rt for all t}	 1 as r	 for some

random M.	 --	 -	 -	 -

(A3) P{u(t) E A, u(0) E B} -s p{A}Po{B} , as t -► 	 for all	 -=

A,B, and some ergodic measure P{.}. - 	 --	 =	 —

(A4) If =f(x) is bounded and continuous, then so is	 ---

Ex f(u(t))where Ex is the expectation given u(0) = x.

.- (A5) P x {lu(t+h) - u(t)I > E}4 0 uniformly in x,t (for

any fixed E > 0) for x,t in any finite region (x = u(0)

initial condition). 	 —	 --	 —	 -

(A6) Let Su (w), the s p ectral density of u(t), exist and be

non-zero over some interval.



(A'O	 Both (.l) and H(s) are asymptotically stable, (1) is

completely controllable and observable.

Conditions (Al) - (A5) (except for (A3)) arc satisified

t)y aLy physical Markov process - of which some component may

form an input to the system: (1) - as far as the author is aware.

In particular, any (Ito) system	 = f(X) 4 a(x)F,; ith white noise

and f,(T Lipschitz satisfies (Al), (A2), (A4), (A5).	 (A3) is

partially a technical :ondition - but it in not unreasonable.

It says partly that the effects of the initial condition wears

off - which is reasonable (in fact, convergence may not always

take place without it). The asymptotic invariance part can

be weakened at the expense of analytic difficulty , but such

ergodic assumptions are quite common.

Next, we state variabilize the relevant quantities. There

are constant, asymptotically stable, systems for which

X = BX + Cu, y(t) = HX(t)

i	 i(6)	 Xy = By Xyi + Cyl Y( + ), y i ( t ) = Hy1Xyl(t)

.uiui ui	 ui-	 ui uiX	 = B X	 + C u, u i (t) = H X	 (t).

Obviously (u(t), X(t), X v"(t), X" (t), i = 0,...1 = X(t) is

Markov and satisfies (Al) - (A6). So does the Markov process

(X(t), X o (t)), where again, the superscript ° imp lies that all

initial conditions in (6) are zero.

I
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00
There are random variables {a i ,5 i I for which (2) holds, and

the random E (t) 0 0 exponentially (w.p.l.).	 (The exponent may

depend on the random realization,but this is unimportant.) (4)

also is meaningful. The superscript o implies again that all

initial conditons are zero. In fact, the entire paragraph below

(4) also holds w.p.l.. with no change - except that	 is random

and X > 0 w.p.l.

We ma y write (4) as z = F(X),	 and ob&erve, owing to (4)

and (5) and the statements following (4), that (Al), (A2), (A4),

05) are satisfied by the z(t) process also - and, in fact by the

joint Markov Q(t), Kt))) - X(t) process.

To complete the analysis, the following results on 'stochastic'

invariant sets is required.

4. Invariant Sets for Stochastic Systems.

Deterministic Case

Let i = NO be a deterministic system and V a Liapunov

function with V = -K(x) < 0. Then, under other boundedness and

smoothness conditions which we need not mention here, x  A M

A: K(x) = 01. Furthermore, (invariant set theorem) let S =

(collection of all points on all paths satisfying K(y.) = 0

and I t = My t ),  - > t > -Q. S is the largest invariant set

contained in M and x 	 -, S as t -> -. The advantage of the invariant

set theorem is that one can substitute the K(y t ) = 0 directly



10

into the dynamics - and test the consequences. Otherwise, all

the Liapunov theorem yields is that K(x t )	 tends to zero - and

we must go through a (sometimes very difficult) limiting _ __Y

operation to determine the location of the asymptotic part of

the path a t . See [31, A] for more details.

Stochastic Case

An analogous situation holds in the stochastic case. This

article is not the place to dwell in detail on the stochastic

invariant set. theorem (see [21, or [51 for a more elementary proof

for the case of discrete time processes with countably many states).

(Note, also that the result in [2] is more general than indicated

by the following argument). However, the following description

should be helpful. Let X 	 be a homogeneous Markov process

which satisfies (Al), (A4) and (A5) for X  replacing u(t).

First, some definitions are given. Let It he the probability

measure of X t ; i.e., ^ t (A) = P{X t E A}.

{¢ t } is said to be weaklv bounded if for each E > 0, there is a

compact set K  for which I t (KE ) > 1 - E for all t >_ 0. Clearly

{j t } is weakly bounded if EIX t j < M  < w for all t. If the

measures of {Y t } are weakly bounded, and the m,tria A is

asymptotically stable, then clearly, the measures of {X t , Yt

for it = AX  + Y t , are .weakly bounded. A set of probability

measures M is an invariant set (for {X t }) it it satisfies the

following: Let I be e measure in M. Then there is a process

X t , tE ( - wN , with measures 
Qt 

so that fo = Q and f t e M.

6
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Thus, if 0 CN, so is an entire trajectory of measures over

The stochastic counterpart of the deterministic

invariant set is a set of measures, since it is the measures

which have a semigroup property. Weak bounder,ness of the

measures (implied by (Al)) replaces the boundedness condition on

the state trajectory which is required for the deterministic

problem.

Let ^ be a measure and B be the largest (measurable) set

on which C(B) = 0. Then the complement of B is the support of

t ' S(;)).	 If {U a } = G is a collection of measures, S(G)

u s
t	

Ct

The	 stochatic	 invariant	 set theorems	 says

Theorem 0. (A composit	 of results proved in	 [21.)	 Assume

(Al),	 (A 1+),	 (A5) for	 X t .	 Let	 G(X t )	 -> 0 w.p.l. Then 
X 
	 -> L

in probability, where L is the support set	 of the largest	 inva-

riant	 set	 of measures M consistent with G(X t ) =	 0	 for	 tE(-- , 00)

(i.e., if tCM, then ^ is concentrated on the set {X: G(X) = 01 )

Let V(X t ) 	 -K(x) < 0, where X t = x, and V(x) > 0, for all x. Then

X + ` L l , where L l is the support set of the largest invariant

set of measures consistent with K(X t ) = 0, tE(--,-). Let

V(X t ) 	 -K(x) + p(x.), where p(Xt ) is bounded and integrable on

[0,-]. Then the same conclusion holds.



1.2

5. The Problem Continued

The convergence result is contained in

Theorem 1.	 Under (Al) - (A7), a i (t	 a°, ^ i (t) -> ^i

in probability as t	 where [a	 So} are constant.

Note. Recall that obtainin g
g {a° 

o
-	

^i} yields the solution to the
i 

identification problem.

Proof.	 Let V(x) = z'z, where X(t) is the composite Markov

process and z is as previously defined. Then V (x_) = -K(x) +

Pt . where pt is given by (5), and, again K(x) = -2k(z'w) 2 .	 Now,

by the discussion immediately succeeding (5), K(X(t)) = 0

implies that E(t) - 0. Next, the set of probability measures

1t 
t } 

for the process{X(t)} consistent with E(t) - 0 w ill be Gal-

culated.	 In particular, what are the possible systems (and their

probability measures)

X(t), z(t)

consistent with

n-1	 m
(9)	 0	 = y n ( t ) +	 oai (t)y i (t) + os i (t)u i (t) = E (t)

Recall that the probability law of the process X(t) is given by

the law of u(t), and the relations (3), (6) which generate the

other componen s of {X(t), z(t)}. Next, some further implications

of E(t) = 0 will be obtained.	 If (3) is to be consitent with

E(t) = 0, then z(t) = z, a random variable.	 Thus, (9) can be
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replaced by (91)

(9')	 0 = Y n ( t ) + 2; a i y i (t) + 2,(s i u i ( t )	 = C(t)^
0	 0

where {ai' ^ i } are random variables.

Next, what is an invariant set of measures M for {X(t)I,

which is consistent with (9') for all t E(-^,^) , and with

a i (t) = a i , ^ i (t) = S i ? The measures in M must also be

consitent with (A3). The asymptotic stability of (1) and the

systems (6) and condition (A3) imply that (A3) also holds if the

collection y i (t), u i (t)	 replace u(t) in (A3).	 Using this

observation and the fact that (9') and the trajectories of

measures in PQ must be consitent with the observation for all

-00 < t < 00, it is seen that the {a i , s i } may be taken to be

independent of the {y i (t), u i (t)}.	 This is intuitively

reasonable; since (9 1 ) must hold for all t E(-^,^), we can

consider that it starts at -2T < 0. Then, for all t > -T, the

{ai ,R i } and {y i (t), u i (t)} are 'almost' independent	 Letting

T -> -	 gives the assertion.

	

Finally, write R(T) = T}m	 E[E(t) E(t +T) I Ct	 Sid

The Fourier tranform of R( T ) is

n	 m

(10)	 IoaJHj(iw) T(i W ) + :^ H j (i W )I 2	Su ( W ) = 0

6
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where t ar e = 1, 11 i (s) = (s+c)`R(s) and T(e.) is the transfer

function of (1).	 By (A6), (10) has a unique constant

solution {ao,^o}	 Thus, the only values of the random variables

consistent with E(t) = 0 and the other conditions, are

constants. By the invariant set theorem, then, any measure

in M must correspond to z(t) = constant = 0. Let X(t) in

X(t) = Mt), z(t)) have dimension q. Then the support of

any in measure ^ in M must be contained in Rqx{0,0,...,0},

where the number of zeros are the dimension of z(t). Thus

z(t) -> 0 in probability.	 Q.E.D.

t Let u  be a second order stationary process, which is input

to a system with output y t and asymptotically stable transfer

function Q(s).	 Let S 1 (w) be the (asymptotic) spectral density

of u t .	 Then that of Y 	 is I Q(,W) 1 2 S 1 ( w, ) .

R



CONCLUS70NS

An interesting identification scheme for scalar input,

scalar output linear systems, proposed by Lion in [1]jis

investigated for a wide Mass of random inputs. The inputs

include the class of functions u(t) = Ek i u i (t), where

{u^(t), ...u- k (t)) is a Markov process which is asymptotically

stationary. An invariant set thecrem for random systems [2]

is used to prove convergence (ir probability) of the identi-

fication algorithm proposed n [1].
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